

HEURISTIC ALGORITHM ON MONTE CARLO FOR CONSTRAINED REDUNDANCY OPTIMIZATION OF COMPLEX SYSTEM

CHANDAN CHOUBEY¹ & KRISHNA GOPAL²

¹Department of Electronics & Instrumentation, Krishna Institute of Engineering & Technology, Ghaziabad, Uttar Pradesh, India

²Dean Academic & Research, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

ABSTRACT

A simple computational procedure has been developed by using Monte Carlo for allocating redundancy among subsystems so as to achieve maximum reliability of a complex systems subjected to multiple constraints which may be linear, non linear separable or non separable. Two examples of linear, non linear separable and non separable constraints with having twenty problems are solved.

KEYWORDS: Active Redundancy, System Reliability, Constraints, Problem Formulation, Monte Carlo Algorithm

INTRODUCTION

Reliability of an overall system can be increased by introducing redundancies in subsystems. In order to ensure that factors such as cost, weight, and volume remain within resources available, system reliability is optimized with respect to these constraints.

The redundancy optimization problem is a classical problem that has attracted considerable attention from the research community. It has been solved by using optimization approaches and techniques such as dynamic programming[1], integer programming[3], mixed-integer linear programming[2], heuristics[4] and meta-heuristics[5] which gives either optimal or very good solutions.

This paper presents a Monte Carlo Method [6] that solves the problems of constrained redundancy optimization in complex system which gives the local optimal system reliability. Our aim is to show how to maximize system reliability subjected to the given constraints. For optimizing the system reliability we prefer simulation because it gives the result fast & accurate.

For solving this problem (or optimizing system reliability) many authors have used cumbersome approaches. However in this paper the proposed Monte Carlo Method is applied for all systems and to all type of constraints and also it has been tried on many problems, with satisfactory results.

PROBLEM FORMULATION AND COMPUTATION PROCEDURE

Notations

- $Ri(x_i)$, $Q_i(x_i)$ Reliability, unreliability of subsystem-i with x_i components.
- Rs(x) System reliability
- x_i Number of components in subsystem-i

- x (x₁,.....x_n)
- $x^*(r_u)$ Optimum value of x in iteration u
- $G_{ir}(x_i)$ Resource-r consumed in subsystem-i with x_i components.
- b_r Maximum of resource-r
- k Number of constraints
- n Number of subsystems
- f(.) Function that yields the system reliability, based on n unique, subsystems and which depends on the configuration of the subsystems.
- $\alpha_l(x)$ Sensitivity-factor
- b_i(x_i) Selection-factor
- p1 Minimal path Set-l of the system
- c_i Cost of the x_i subsystem

Assumptions

- The system and all of its subsystems are coherent.
- There are n subsystems in the system. Subsystem structure (other than coherence) is not restricted.
- All component states are mutually statistically in dependent.
- All constraints are separable and additive among components. Each constraint is an increasing function of x_i for each subsystem.
- Redundant components can not cross subsystem boundaries.

Problem Formulation

- The problem of constrained redundancy optimization in complex systems can be reduced to the following integer programming problem:
- Maximize: $Rs(x) = f(R_1(x_1),...,R_n(x_n))$
- Subject to multiple linear or nonlinear constraints :

 $\sum_{i=1}^{k} G_{i,r}(x) \leq b_r$; $r = 1,2,3,\dots,s$ where the x_i are positive integers, for all i

MONTE CARLO ALGORITHM

Steps of Algorithm

Let $x_i = 1$ for all i

Calculate Rs(x)

66

Repeat 100 times

 $\mathbf{x}_{\mathbf{f}}^{*}$ = random number between 1 to 10 for all i.

Both linear and nonlinear $(\sum_{i=1}^{k} G_{ir}(x_i) \le b_r)$ are violated. If no constraint are violated

Calculate Rs(x*)

If $Rs(x^*) \ge Rs(x)$

Then $Rs(x) = Rs(x^*)$ at $x = x^*$

Calculate the output \mathbf{x}_{i}^{*} , G(\mathbf{x}) and Rs(\mathbf{x})

The simulation is limited to 3000 iteration only

FIRST NUMERICAL EXAMPLE [7]

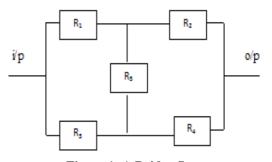


Figure 1: A Bridge System

The expression of system reliability (R_s) is

$$\begin{aligned} R_{s}(x) &= R_{1}(x_{1})R_{2}(x_{2})Q_{3}(x_{3})Q_{5}(x_{5}) + Q_{1}(x_{1}) R_{3}(x_{3}) R_{4}(x_{4}) Q_{5}(x_{5}) + [R_{1}(x_{1})R_{3}(x_{3}) + R_{3}(x_{3})R_{5}(x_{5}) + R_{5}(x_{5})R_{1}(x_{1}) - 2R_{1}(x_{1})R_{3}(x_{3})R_{5}(x_{5})] * [R_{2}(x_{2}) + R_{4}(x_{4}) - R_{2}(x_{2})R_{4}(x_{4})] \end{aligned}$$

Problem

i	1	2	3	4	5
\mathbf{R}_{i}	0.70	0.85	0.75	0.80	0.90
Qi	0.30	0.15	0.25	0.20	0.10
ci	2	3	2	3	1

Maximize $R_s(x)$

Subjected to linear constraints $\sum_{i=1}^{5} c_i x_i \le 20$ Where $x_{i,i} = 0,...,5$ are positive integers

Solution

Table 2: Shows the Optimal S	Solution a	itter Particul	ar Iteration
------------------------------	------------	----------------	--------------

R _i	0.70	0.85	0.75	0.80	0.90	$\sum c_i x_i$	R _s (x)	Iteration (u)		
Qi	0.30	0.15	0.25	0.20	0.10					
ci	2	3	2	3	1	20	0.9949	2400		
Xi	1	2	4	1	1	20	0.9949			
$c_i x_i$	2	6	8	3	1					

The above table shows the result of Monte Carlo Simulation. At 2400 iteration we get best combination of redundancy (x_1, \dots, x_5) , which satisfy the given constraints, It means the optimal solution is $x^* = \{1, 2, 4, 1, 1\}$ and $R_s(x^*) = 0.9949$.

TWENTY DIFFERENT SETS OF PROBLEM

Twenty different data sets are considered and are solved by the proposed algorithm to obtain the best combination of redundancy (x_i) and system reliability (R_s) .

Problems

Cost (c _i)	c ₁	c ₂	c ₃	c ₄	c ₅
	2	3	2	3	1

Table 4: Shows the Subsystem's Reliability and Consumed Resources

Problem No.	R ₁ (x ₁)	$R_2(x_2)$	R ₃ (x ₃)	R ₄ (x ₄)	R ₅ (x ₅)	$\sum_{i=1}^{5} c_i x_i \leq 1$
1	0.70	0.85	0.75	0.80	0.90	20
2	0.60	0.70	0.80	0.90	0.60	30
3	0.70	0.85	0.90	0.80	0.75	30
4	0.70	0.85	0.90	0.80	0.75	35
5	0.80	0.80	0.90	0.90	0.90	25
6	0.80	0.80	0.90	0.90	0.90	30
7	0.80	0.80	0.90	0.90	0.90	35
8	0.75	0.65	0.85	0.95	0.55	20
9	0.75	0.65	0.85	0.95	0.55	25
10	0.75	0.65	0.85	0.95	0.55	30
11	0.80	0.65	0.72	0.78	0.60	25
12	0.80	0.65	0.72	0.78	0.60	30
13	0.80	0.65	0.72	0.78	0.60	34
14	0.90	0.90	0.75	0.75	0.75	25
15	0.90	0.90	0.75	0.80	0.75	25
16	0.90	0.90	0.75	0.80	0.75	30
17	0.72	0.62	0.59	0.93	0.67	25
18	0.72	0.62	0.59	0.93	0.67	30
19	0.72	0.62	0.59	0.93	0.67	35
20	0.95	0.67	0.59	0.93	0.67	30

Solutions

Table 5: Shows Optimal Redundancy and System Reliability for the Given Problems

Problem	Redundancy	Consumed	Reliability	Iteration
No.	$\{\mathbf{X}_{i}\}$	Resources (∑c _i x _i)	$(\mathbf{R}_{\mathbf{S}}(\mathbf{x}_{\mathbf{i}}))$	(u)
1	1,2,4,1,1	20	0.9949	2600
2	1,2,5,3,3	30	0.9998	1900
3	4,2,1,4,2	30	0.9991	2100
4	5,3,3,3,1	35	0.99996	1700
5	3,1,1,4,2	25	0.9990	2700
6	2,3,3,3,2	30	0.9999	1600
7	4,1,4,4,4	35	0.99996	800
8	3,1,2,2,1	20	0.9953	2600
9	4,2,1,2,3	25	0.9974	2300
10	2,3,5,2,1	30	0.9998	1500

		Table 5: Contd.,		
11	3,1,2,3,3	25	0.9939	2300
12	2,2,3,3,5	30	0.9978	1100
13	1,2,5,5,1	34	0.9995	900
14	3,3,2,1,1	23	0.9997	2800
15	3,3,1,1,5	25	0.9995	2100
16	3,3,1,4,1	30	0.9997	1700
17	5,1,1,2,4	25	0.9956	1900
18	3,2,4,2,4	30	0.9986	1200
19	4,1,5,3,5	35	0.9998	900
20	2,1,5,3,4	30	0.9998	1400

SECOND NUMERICAL EXAMPLE

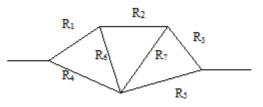


Figure 2: A Complex System (5 Nodes, 7 Edges)

The system reliability (R_S) equation is

$$\begin{split} \mathbf{R}_{\mathrm{S}}(\mathbf{X}) &= (\mathbf{Q}_{6}^{x_{6}})[(1-\mathbf{Q}_{1}^{x_{1}})(1-\mathbf{Q}_{2}^{x_{2}})(1-\mathbf{Q}_{3}^{x_{5}})(\mathbf{Q}_{7}^{x_{7}})(\mathbf{Q}_{4}^{x_{4}}) + (\mathbf{Q}_{1}^{x_{1}})(\mathbf{Q}_{2}^{x_{2}})(1-\mathbf{Q}_{4}^{x_{4}})(1-\mathbf{Q}_{5}^{x_{5}}) \\ & (\mathbf{Q}_{7}^{x_{7}}) + [(1-\mathbf{Q}_{1}^{x_{1}})(1-\mathbf{Q}_{2}^{x_{2}})(1-\mathbf{Q}_{4}^{x_{4}}) + (1-\mathbf{Q}_{4}^{x_{4}})(1-\mathbf{Q}_{7}^{x_{7}}) + (1-\mathbf{Q}_{7}^{x_{7}})(1-\mathbf{Q}_{1}^{x_{1}})(1-\mathbf{Q}_{2}^{x_{2}}) - 2(1-\mathbf{Q}_{1}^{x_{1}})(1-\mathbf{Q}_{2}^{x_{2}})(1-\mathbf{Q}_{4}^{x_{4}}) \\ & (1-\mathbf{Q}_{7}^{x_{7}})] [(1-\mathbf{Q}_{3}^{x_{5}}) + (1-\mathbf{Q}_{5}^{x_{5}}) - (1-\mathbf{Q}_{3}^{x_{5}})(1-\mathbf{Q}_{5}^{x_{5}})]] + (1-\mathbf{Q}_{6}^{x_{6}})(1-\mathbf{Q}_{1}^{x_{1}}\mathbf{Q}_{4}^{x_{4}})[1-((1-\mathbf{Q}_{2}^{x_{2}}\mathbf{Q}_{7}^{x_{7}})(1-\mathbf{Q}_{1}^{x_{1}}))\mathbf{Q}_{5}^{x_{5}}] \end{split}$$

Problem

Maximize the System Reliability R_s(x)

Subject to the given constraints $\sum_{i=1}^{7} c_i x_i \le 35$ where x_i , i = 1, ..., 7 are positive integers.

Solution

R _i	0.60	0.55	0.75	0.90	0.90	0.75	0.60	$\sum c_i x_i$	R _s (x)	Iteration(u)
Qi	0.40	0.45	0.25	0.10	0.10	0.25	0.40			
ci	2	3	3	2	2	1	1	25	0.0000	1700
Xi	1	2	3	3	2	3	5	35	35 0.9899	1700
$c_i x_i$	2	6	9	6	4	3	5			

Table 6: Shows the Optimal Solution after Particular Iteration

The above table shows the result of Monte Carlo Simulation; at 1700 iteration we get best combination of redundancy (x_1, \dots, x_7) . It means the optimal solution is $x^* = \{1, 2, 3, 3, 2, 3, 5\}$ and $Rs(x^*) = 0.9899$.

APPLICATIONS

Monte Carlo is also applicable for both linear and nonlinear Constraints. Same bridge systems as shown in figure 1 are taken and new twenty different problems are framed by changing the each subsystem reliability, we can obtain the optimal system reliability under the subjected non linear constraints.

 $\begin{aligned} \text{Maximize the system reliability } R_s(x) &= R_1(x_1)R_2(x_2)Q_3(x_3)Q_5(x_5) + Q_1(x_1)\ R_3(x_3)\ R_4(x_4)\ Q_5(x_5) + [R_1(x_1)R_3(x_3) + R_3(x_3)R_5(x_5) + R_5(x_5)R_1(x_1) - 2R_1(x_1)R_3(x_3)R_5(x_5)] * [R_2(x_2) + R_4(x_4) - R_2(x_2)R_4(x_4)] \end{aligned}$

Subjected to the Non Linear (Separable) Constraints [8]

$$\begin{split} g_1(x) &= x_1^2 + 2x_2^2 + 3x_3^2 + 4x_4^2 + 2x_5^2 \leq C_1 \\ g_2(x) &= 7(x_1 + \exp(x_1/4)) + 7(x_2 + \exp(x_2/4)) + 5(x_3 + \exp(x_3/4)) + 9(x_4 + \exp(x_4/4) + 4(x_5 + \exp(x_5/4))) \leq C_2 \\ g_3(x) &= 7x_1 \exp(x_1/4) + 8x_2 \exp(x_2/4) + 8x_3 \exp(x_3/4) + 6x_4 \exp(x_4/4) + 9x_5 \exp(x_5/4)) \leq C_3 \end{split}$$

Twenty Different Problems

Table 7: Shows 20 Problems Containing Subsystem's Reliability

Problem No.	$\mathbf{R}_{1}(\mathbf{x}_{1})$	$R_2(x_2)$	$\mathbf{R}_{3}(\mathbf{x}_{3})$	$\mathbf{R}_4(\mathbf{x}_4)$	$\mathbf{R}_{5}(\mathbf{x}_{5})$	C ₁	C ₂	C ₃
1	0.80	0.85	0.90	0.65	0.75	110	175	200
2	0.70	0.90	0.55	0.65	0.85	110	175	200
3	0.90	0.95	0.55	0.85	0.55	110	175	220
4	0.80	0.70	0.60	0.80	0.70	115	140	220
5	0.60	0.78	0.65	0.82	0.70	115	140	220
6	0.60	0.78	0.65	0.82	0.70	120	130	180
7	0.90	0.88	0.82	0.83	0.50	120	130	180
8	0.90	0.88	0.82	0.83	0.50	150	140	210
9	0.86	0.79	0.78	0.88	0.78	150	140	210
10	0.65	0.75	0.55	0.45	0.85	150	140	210
11	0.65	0.75	0.55	0.45	0.85	125	155	215
12	0.70	0.80	0.90	0.90	0.90	125	155	215
13	0.78	0.88	0.91	0.81	0.76	125	155	215
14	0.78	0.88	0.91	0.81	0.76	150	150	250
15	0.90	0.80	0.75	0.65	0.83	150	150	250
16	0.9	0.6	0.76	0.79	0.81	110	175	200
17	0.9	0.6	0.76	0.79	0.81	113	177	210
18	0.77	0.68	0.59	0.91	0.86	54	138	90
19	0.77	0.68	0.59	0.91	0.86	61	142	187
20	0.58	0.61	0.93	0.74	0.9	112	147	187

Solutions of Twenty Different Problems

Table 8: Shows Optimal Redundancy, System Reliability and Iteration

Problem	Redundancy	Constrains		Reliability	Iteration	
No.	X 1, X 2, X 3, X 4, X 5	C ₁	C ₂	C ₃	$\mathbf{R}_{s}(\mathbf{x}_{i})$	u
1	3,3,3,2,1	110	175	200	0.9993	2800
2	2,1,4,3,1	110	175	200	0.9910	1800
3	4,2,2,1,3	110	175	220	0.9996	900
4	3,2,2,2,2	115	140	220	0.9939	2500
5	3,2,3,2,1	115	140	220	0.9933	1900
6	2,2,4,2,1	120	130	180	0.9944	2600
7	1,1,2,3,3	120	130	180	0.9957	1900
8	1,3,3,2,2	150	140	210	0.9986	1100
9	2,1,3,3,1	150	140	210	0.9989	1700
10	2,4,3,1,1	150	140	210	0.9775	1600
11	2,4,3,3,1	125	155	215	0.9854	2100
12	3,2,3,2,1	125	155	215	0.9995	1200
13	3,2,2,3,3	125	155	215	0.9998	1000
14	2,3,3,3,2	150	150	250	0.9858	1300

Table 8: Contd.,								
15	3,4,3,1,1	150	150	250	0.9994	1600		
16	1,2,3,3,3	110	175	200	0.9971	1100		
17	3,2,3,4,1	113	177	210	0.9993	1400		
18	5,2,1,2,1	54	138	90	0.9931	1700		
19	4,3,1,2,2	61	142	187	0.9983	1900		
20	1,3,3,4,1	112	147	187	0.9994	2400		

Subjected to Non Linear (Non Separable) Constraints

 $g_1(x) = 2x_1x_2^2 + 3x_3x_4^2 + 4x_4x_5^2 \le C_1$

$$g_2(x) = 7(x_1 + \exp(x_1/4)) + 7(x_2 + \exp(x_2/4)) + 5(x_3 + \exp(x_3/4)) + 9(x_4 + \exp(x_4/4)) \le C_2$$

 $g_3(x) = 7x_1 exp(x_2/4) + 8x_2 exp(x_1/4) + 8x_3 exp(x_4/4) + 6x_4 exp(x_3/4) + 9x_4 exp(x_5/4) \le C_3$

Twenty Different Problems

Problem	Reliabilities R _i (x _i)					Constraints		
No.	R ₁	R ₂	R ₃	R ₄	R ₅	C ₁	C ₂	C ₃
1	0.80	0.85	0.90	0.65	0.75	110	175	200
2	0.70	0.90	0.55	0.65	0.85	110	175	200
3	0.90	0.95	0.55	0.85	0.55	110	175	220
4	0.80	0.70	0.60	0.80	0.70	115	140	220
5	0.60	0.78	0.65	0.82	0.70	115	140	220
6	0.60	0.78	0.65	0.82	0.70	120	130	180
7	0.90	0.88	0.82	0.83	0.50	120	130	180
8	0.90	0.88	0.82	0.83	0.50	150	140	210
9	0.86	0.79	0.78	0.88	0.78	150	140	210
10	0.65	0.75	0.55	0.45	0.85	150	140	210
11	0.65	0.75	0.55	0.45	0.85	125	155	215
12	0.70	0.80	0.90	0.90	0.90	125	155	215
13	0.78	0.88	0.91	0.81	0.76	130	155	215
14	0.78	0.88	0.91	0.81	0.76	150	150	250
15	0.90	0.80	0.75	0.65	0.83	150	150	250
16	0.90	0.60	0.76	0.79	0.81	110	175	200
17	0.90	0.60	0.76	0.79	0.81	113	177	210
18	0.77	0.68	0.59	0.91	0.86	70	145	150
19	0.77	0.68	0.59	0.91	0.86	70	138	140
20	0.58	0.61	0.93	0.74	0.90	170	160	210

Table 9: Contains the Subsystem's Reliability and Consumed Resources

Solution of Twenty Different Problems

Table 10: Shows Optimal Redundancy and System Reliability and Constrains

Problem	Redundancy	Constraints			Reliability	Iteration
No.	{x _i }	C ₁	C ₂	C ₃	$\mathbf{R}_{S}(\mathbf{x}_{i})$	u
1	1,3,4,1,3	66	126	122	0.9977	1600
2	5,2,4,1,2	68	154	186	0.9964	2600
3	3,2,2,1,2	46	115	114	0.9993	600
4	2,3,3,2,2	104	134	164	0.9961	2400
5	3,3,2,2,1	86	132	165	0.9909	2700
6	1,2,4,2,2	88	123	147	0.9913	1800
7	2,3,1,2,2	80	120	127	0.9980	2800
8	3,3,2,2,2	110	137	171	0.9999	1400

Table 10: Contd.,								
9	1,3,3,3,1	111	133	169	0.9984	1700		
10	3,3,4,1,1	70	135	164	0.9863	2500		
11	3,4,3,1,1	109	138	180	0.9907	2800		
12	4,3,1,2,1	116	142	183	0.9991	1400		
13	2,3,3,3,1	129	142	193	0.9999	1800		
14	1,3,3,3,2	147	138	179	0.9997	1900		
15	2,3,3,3,1	129	142	193	0.9994	2400		
16	3,3,3,2,1	98	139	183	0.9970	1200		
17	1,3,3,3,1	111	133	169	0.9977	2600		
18	5,1,2,2,2	66	141	149	0.9963	2100		
19	1,3,5,1,3	69	135	137	0.9943	2800		
20	4,3,2,2,3	168	168	209	0.9992	1800		

RESULTS AND CONCLUSIONS

In this paper, the Proposed Monte Carlo method is applied to different problems of bridge and complex (5 nodes, 7edges) system to optimize the system reliability under the given constraints.

This leads to the conclusion that the system reliability of Monte Carlo is much more optimized and we can get better result. The proposed method is also not affected by any kind or number of constraints which is shown by applying different problems. Its simplicity and suitability for computer solution makes this method highly useful to reliability engineers. It has not been rigorously proved that this method is exact, but no faulty solution has yet been found. Even if the method is not exact, it appears to be very close and we get better optimal solution for any complex system.

REFERENCES

- 1. D.K. Kulshrestha, M.C. Gupta, "Use of dynamic programming for reliability engineers," IEEE Trans. Reliability, vol R-22, pp 240- 241 (Oct 1973).
- 2. P.J. Kolesar, "Linear programming and the reliability of multi component systems," Naval Research Logistics Quarterly, vol 15, pp 317-327 (Sep 1967).
- 3. K.B. Misra, "A method of solving redundancy optimization problems," IEEE Trans. Reliability, vol R-20, pp 1 17-120 (Aug 1971).
- 4. K.K. Aggarwal, "Redundancy optimization in general systems," IEEE Trans. Reliability, vol R-25, pp 330-332 (Dec 1976).
- 5. F. Altiparmak, B. Dengiz, and A. E. Smith, "Optimal design of reliable computer networks: A comparison of metaheuristics," *J. Heuristics* vol. 9, no. 6, pp. 471–487, Dec. 2003.
- 6. J. Y. Lin and C. E. Donaghey, "Monte Carlo simulation to determine minimal cut sets and system reliability," in *Proceedings of the 1993 Annual Reliability and Maintainability Symposium*, Atlanta, GA, USA, 1993.
- Dinghua, Shi; "A New Heuristic Algorithm for Constrained Redundancy-Optimization in Complex Systems," IEEE Trans. Reliability, Volume: R-36, pp 621 – 623(Dec 1987)
- 8. J. Sharma, K.V. Venkateswaran, "A direct method for maximizing the system reliability", IEEE Trans Reliability, vol R-20, 1971 Nov, pp 256-259.